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I. INTRODUCTION AND SUWAY

The Polywellt is a magnetic version of a Spherically Convergent Ion Focus

(SCIF) device which was proposed by R. W. Bussard1' 2 as a significant variation

of earlier studies on electrostatic confinement. 3'4 The idea of this device is

to inject high energy electrons into a quasi-spherical magnetic field; the

electrons create a potential well of sufficient depth to accelerate ions from

low energy at the periphery to fusion energies within a focus at the center of

the sphere. Injection of electrons keeps the system electrically nonneutral,

so that the potential well which accelerates the ions is maintained at a constant

value sufficient to confine the ions within the device, returning them again and

again at high velocity to the central focus. Essential to the success of the

scheme is that the ions maintain their nonthermal velocity distribution, with

primarily radial flow, long enough to produce fusion in the dense focus at the

center of the sphere.

If the ion source is at the periphery and ions return to their birth point

(turning points), then ar isotropic source at R will clearly produce an

anisotropic (non-Maxwellian) distribution at r < R, since vr increases as

/2eo(r)/mi, while from conservation of angular momentum vI increases as v1 -

vR R/r, with 2e~max/mi - viR2 R2/r2 determining rc, the closest approach of an
A

ion to the center, where v±R is the velocity perpendicular to ir of an individual

ion at r - R, and where -0 at the location ofthe ion source."' 2
r

If the ions must converge to a high density, small radius focus, to form

a reactor relevant configuration, ion-ion collisional effects can destroy the
0

configuration, even if they do not cause ions to leave the device. There are

two distinct effects that collisions have on ion convergence. First, as ions
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born at low energy pass through the dense core of the device, they will be nearly

monoenergetic, at the energy of the well. Collisional processes will tend to

thermalize the velocity distribution in the core. An ion which is upscattered

in energy will have a turning point at a radius larger than the radius at which

it was born and can eventually be lost to the dense core by escape from the

device or by magnetic deflection, since B increases with radius in the multicusp

field characteristic of SCIF devices, B - rm, with m typically > 3.

The second collisional effect involves isotropization of the ion velocity

distribution in the bulk of lower density plasma outside the core. In this

large scale region, ion-ion collisions can transfer momentum from the primarily

radial flow, which produces good spherical convergence, to a more isotropic

distribution of velocities. This deflection by collisions leads to an increase

of local azimuthal velocity in this bulk region, which clearly decreases the

convergence of the ions to the core.

In addition to the core and the bulk plasma which surrounds it, there is

a third region with distinctive collisional properties, namely the edge plasma,

where the bulk of the ions have their turning points. In this region ion

velocities are low, and collisions much more frequent than in the interior. In

this region the ion distribution due to previous collisions in the interior tends

to become more anisotroDic, while collisions in the edge itself make the edge

distribution more tsotrooic. An isotropic distriojion at the edge will produce

exactly the strong radial convergence required for the SCIF. Thus due to the

large ion orbits, collisional processes in the edge will tend to drive the

distribution in the interior to stay anisotropic and convergent. In this, edge
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collisions compete with local collisions in the interior which attempt to produce

a local Maxwellian. If edge collisions dominate, even though large angle

scattering will eventually thermalize the entire system, the more rapid small

angle scattering (which competes with the fusion reacting time scale) will force

the distribution to stay non-Maxwellian in the interior. This effect is simply

a matter of competitive rates of thermalization in the various regions.

In Section II, we calculate the ion collision frequencies in the various

spatial regions, for both experimental and reactor grade plasmas. In Section

III, we use a diffusion approximation to give heuristic estimates of the time

soales for "loss" of ion convergence due to ion-ion collisional effects in the

core and bulk of the device, as discussed above. In Section IV, we give a

Fokker-Planck-like calculation of the ion distribution which results from the

combined effect of collisions in all three regions, and show that the edge

effects dominate, producing a Maxwellian edge and a non-Maxwellian convergent

interior. In Section V we apply the results to estimating loss rates in a SCIF

reactor.
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II. ESTIMATES OF ION COLLISION RATES

In this section we estimate the various ion collision rates, as discussed

in Section I. Because collisions depend on energy and density, we first present

the radial density and energy profiles expected in an idealized version of the

SCIF, and discuss the collisional rates in the different regions, for both

experimental and reactor-grade parameters, using the parameter set in Table I.

A. ION ENERGY AND DENSITY PROFILES

As a first approximation for the motion of a test ion in a SCIF device,

we assume the ion undergoes conservative motion in a spherically symmetric

electrostatic potential well. The ion is born with an energy Eo at a location

R. The total energy of the particle is conserved:

El(r) - mi (vr ++ v2)- e0(r) (1)

Here Ei is the total energy, mi is the ion mass, vr and v1 are the radial and
azimuthal ion velocities, 2 v2 + V2 in a spherical coordinate system, and

0(r) is the electrostatic potential energy.

We assume the electrostatic potential has the following spatial form:

0(r) -"max I _ (r) (2)

5



where #max is the value of the potential at r - O, the center of the device, and

O - 0 at r - R, where R is the location of the ion source. The actual form of

#(r) is not relevant to the qualitative results we obtain.

We assume that the ion is born at a location where magnetic effects are

weak. '2  If this is not the case, the effect of collisions will be irrelevant,

since we will show that collisional time scales are larger than the time it takes

for an ion to transit the device, while magnetic effects would destroy

convergence before a single pass. The magnetic deflection can be estimated by

calculating the orbits of an ion in a magnetic field B - BO(r/RB)m, where R, is

radial location where B - Bo, and a radial potential O(r), taking the direction

of B to be perpendicular to VO in order to find the maximum deflection. This

was done in Reference 2, leading to a spatial spread in the ion focus due to

magnetic deflection from the fields at r < ro of

Wr2 roZm r2
Sr ci (00

(m + 1)B (2eo/H)

where ro is the ion birthpoint (r0 < RB) and 00 the potential drop from r - 0

to r - ro. For the purpose of calculating collisional effects, we assume that

the source is at an r0 which provides satisfactory convergence.

The test ion radial energy profile is then approximately

Er- emax [I ()P] + E (3)

6



The ion azimuthal energy profile follows from conservation of angular momentum,

rv±(r) - constant, leading to

1 2 R2E•- mlv 1R (?)

where viR is the ion's azimuthal velocity at birth.

We assume that the ion source is active, for a time long compared with the

time it takes for an ion to flow from r - R to r = 0 and back again, and that

the source produces a low energy ion cloud at r - R. The ion distribution

everywhere, and the radial ion density profile, are then determined by the

potential O(r) and the ion distribution function f1. at the birth point, which

can be written in terms of the constants of the motion (E and rv 1 ), since the

Vlasov equation for the steady state is fi (E, rv±) - constant. There are three

quite different regions of the device, characterized by the relative values of

the ion's birth energy, and azimuthal and radial energies. Within a very small

radial distance inward from the ion birth point, the potential change is

negligible, the ion energy is of the order of it's birth energy, and the density

is given by n - nedge. The potential increases inward radially, and since the

maximum well depth is in the keV range, compared with birth energies in the

several eV range, it follows that 2eO >> Eo a short radial distance from the

edge, while m v
2  2

e iR (R/r) < 2eO. These conditions hold for a large radial region

of the device which we refer to as the bulk. EveJually, however, at a smaller

radius, r < R, 2 (R/rc)2 2ea and the ions can come no closer to r -raisR r max

0. This defines the dense core region. This inward motion clearly evolves a

Haxwellian source at r - R into a radially counterstreaming bi-Maxwellian fi at

r < R proportional to
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m m V2

-F (vr -Vd) 2T(r
e r

where the radial drift responds to the radial electric field, vd - (2eO/mi) 1/ 2,

and the transverse utemperature" T • mViv (R2/r ) increases inwardly to provide

2conservation of angular momentum, with miv 1 o an average perpendicular energy of

ions born at r,- R. If the ion source is distributed rather than sharply

localized, the same arguments presented here can be used with reference to

azimuthal "slices" of the ion source.

Integrating fi over velocity yields the density in the various radial

regions of the device. As a model for the ion distribution at the birth point,

we assume that at birth the ion distribution function is uniform in energy up

to some small energy Eo, and uniform in angular momentum up to some small

azimuthal velocity vjo, and take the potential at the birth point to be 0 - 0.

This distribution is described in terms of the constants of the motion (E -

(l/ 2 )mi(vr + v2) - eo, rv ) by the function

1= 3(mi/Eo)3/2 nedge 0 < E<E 0 0 < rv± < Rv

- 0 else

A Maxwellian gives similar results for n(r), but t flat distribution is easier

to work with analytically. The Vlasov equation for steady state is f(E,rv1 ) -

constant, so the density and distribution everywhere is determined by the

potential and the value of f at the ion birth point. There are three regions.

For a ver small distance from the birth point, the potential is negligible, and
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the density is given by n - nedge* In the bulk of the plasma, interior from the

edge, where E << 2e0, and miV2o(R/r) 2 < 2eO, the density is given by integrating

f over dv dvr with the result (rc is defined in Eq. (5) below)

E0 1/2 R2

r 3

Assuming that the potential reaches its full value at a moderately large

distance from r - 0, we see that a mean electron density throughout the bulk of

the device will go as I/r2. Moving inward, the (R/r)2 factor eventually becomes

"substantial, so that the density becomes much larger than nedge. Eventually,

the radius is so small that m V2 (R/r) 2 > 2 eOmax. Inside that radius the density

is changing fairly slowly, on the scale of the changing potential. This defines

the radius of the dense core rc as the radius at which 2eO - miV2 (R/r) 2 , because

outside that radius n - I/r2, while inside that radius n is nearly constant,

found by integrating fi over velocity,

E0  1/2 (R )2
c -emax rc c

2 1/2rc = (miv±o/ 2 eOmax) R . (5)

The size of the core and the central density are seen to depend on the angular

momentum at the outer turning points of the ion motion. This leads to an overall

view of the SCIF which determines the density and energy profiles needed to

calculate the collisional relaxation of fi toward Maxwellian.
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B. COLLISION FREQUENCY PROFILE

Using the ion distribution function discussed in the last section, where

most of the ions have turning points vr - 0 at the same radius r - R at the

periphery of the central potential 0(r), and taking the radial and azimuthal

energy moments of the distribution in the three regions of the device, we find

that the core and the edge are Isotropic, while the bulk of the plasma is highly

anisotropic, with Er >> E1 .

In the core, defined by Eq. (5), the ion density is relatively flat; using

the above estimates for the ion energy and density, we write the ion-ion

(hpyirogen) collision time in the core, Tiic, as (energies are in eV, density in

cm-3)

7 2 x 107 (eomax) 3/ 2  (6)

iic n nc inA

where the Coulomb logarithm in the core is

lnA = 7 + 2.3 log io (n O max .3/2

c (n1  c 114 m-3 )1/2]

Equation (6) gives 7iIc 1 I s and 30 x 10-6 s, respectively, for the EXP and

REACTOR parameters in Table I. In addition, lnAc - 23 and 20 for the EXP and

REACTOR parameters.
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2
In the bulk, the ion density decreases radially outward basically as 1/r

with an additional weak radial dependence from #, which tends to make the density

distribution flatter than 1/r2 beyond about the R/2 point of the device. The

ion-ion collision time in the bulk, 7iiB, is

TiiBn m .. ~P3/2 1 nAc•iiB ý iic n T-A

and using Eqs. (4) and (5), which give

c 4 - r~p 112 (R)2 (r2
nJ B 3r

we have that

4 (e max 2 r 2 (]nAcl

'liB -rtmaj (R) 1. _ (ri']2 LinBJ

where

InAB- 7 + 2.3 log1o [ max [i - R . 3)/2]
B~ (nB/10 14 CM'3) 1/2 J

For r/R - 1/2, InAB 2 27 and 25 for the EXP and REACTOR parameters, respectively.

The edge region is defined as that region in which the ion radial velocity

slows down to a value of the order of it's birth speed, that is, Er - e~max [I -

(re/R)P] - Eo. The radial extent of the edge region, Are = R - re, is then given

11



by Are - (1/p)(Eo/e~max)R. The ion-ion collision time in the edge, T iie, is

given by

r Eo 13/2 n lncI
iie 7iic ke nlii maxj nedge e

and using Eq. (5), this becomes

7 E flnAc'I77ii e r-I keVA iic'

where

E 3/

lnAe = 7 + 2.3 log 0o c 4 .3)/2
nedge/10 cm )

and lnAe - 14 and 7 for EXP and REACTOR parameters, respectively.

The collision time 7 is not sufficient for comparing the effectiveness

of collisions in the three spatial regions, because the time an ion spends in

each region is drastically different. A better figure of merit is the ratio of

the ion transit time ttr through the region Ar to the collision time rii in the

region. This essentially gives the number of collisions, Nco1l, that a test ion

undergoes in a particular region of the device per transit.

The number of collisions in the core per pass is then, since rc -

(Eo/e~max )1 2R,
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(N 2R fE0ol 1/2f i '11/2 ;
Col) _ll [le -5xi, EXPi. i ax F.maxj

; 3 x 10-4 REACTOR

Thus one collisional upscatter time corresponds to a large number of ion

transits.

The ratio of the number of collisions in the edge region to the number

of collisions in the core per transit is

(Ncoll)edqe Are fe~max 1/2 7iic

(Ncoll)c = 0 7iie

which is (take p - 3)

(Ncoll)edge emax e 4 x , EXP

: 2 x 10 , REACTOR

which corresponds to a small fraction of an edge collision per transit for

experimental parameters, but to approximately one collision per transit for

reactor parameters .

As representative values for the bulk region, we take r - R/2. Then the

ratio of the number of collisions in the bulk region to the number of collisions

in the core per pass is approximately
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(Nco11)B _R_/_2 ric

T(Nc11)c rc 'iiB

which becomes

(Ncoll)B 2R Eo lnA 5 -20 5em-a) n-c x 1o"0 EXP
(co11)c r¢ a

2 x 10- 2, REACTOR

From the above, we see that the number of collisions per pass is by far

the highest at the edge region, where the low energy ion distribution is

relatively isotropic. The number of collisions is lowest in the bulk of the

device, where the radial ion energy is high, and where the energy distribution

is highly anisotropic, with Er >> E .
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III. HEURISTIC ESTIHATES OF ION =LOSS" RATES

In this section we give heuristic estimates of ion "loss" rates, in the

sense of loss of ion convergence, in a SCIF device, due to the following ion-

ion collisional effects: (1) upscatter in ion radial energy in the core region,

and (2) perpendicular deflection in the bulk region.

The change in ion velocity by ion-ion scattering in a single transit

through the bulk and core is expected to be small, since the ratio of transit

time to collision time in the bulk and core of the device is small for both

experimental and reactor parameters. For example, from Section II, the ratio

of the transit time to the ion-ion collision time in the core is of the order

of 5 x 10-8 for experimental parameters, and of the order of - 3 x 10O4 for

reactor parameters. The ratio of the transit time to the ion-ion collision time

in the bulk, for r - R/2, is of the order of - 3 x 10.9 for experimental

parameters, and of the order of - 6 x 10- 6 for reactor parameters. Therefore

we treat upscatter as a diffusion process (in velocity space) in the core and

bulk, rather than as a single scattering process. In analogy with the spatial

diffusion problem, we use a continuity equation in velocity space as a basis for

the loss process

dn D 2n

where the diffusion coefficient D - (6v) 2/7, with 6v being the change in velocity

produced in a time 7 due to scattering in the dense core, and n is the time

dependent density of ions in velocity space.
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For the estimates in this section, we assume that the background ions are

isotropic and are described by a Naxwellian distribution; we expect this to give

a reasonable result at least to order of magnitude. The diffusion tensor in the

Fokker-Planck equation, Dtj - <Av 1 Avj>/2T, is diagonal in this case, and can be

expressed in terms of components parallel, D11, and perpendicular, D1 , to the

direction of the test particle initial velocity (before the collision). These

components ares

D-e4n' lnA' __(_/__)

eI 4xc nflnAD fte2 W v 2(v/v'

b4,

en n [ .(v/v,,-$ 1vv
0 v 2(v/v,)2]

where the unprimed, primed quantities refer to the test, field ions,

respectively; the temperature T' for the field ions is (3/2) T' - (1/2) miv'2I

lnA' is the Coulomb logarithm for the field ions, and *1 (x) is defined in terms

of the error function

ho•(x) L I exp (f 2 ) dr

by

I](X) - t(x) - L exp(.x 2) # *(x) - x ax

For x- 1, #1/2x 2 - 0.214, and 9- 0.843.' For x > 2, #41 = 1.5
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A. ION LOSS DUE TO RADIAL UPSCATrER IN THE CORE

Upscatter in radial velocity in the core by collisions can affect ion

convergence in the device. Consider a collision which causes one ion to gain

energy and another ion to lose energy. The ion which gains energy in the core

can make a larger radial excursion to a radius beyond it's birth radius, with

the possibility that the magnetic fields at the new turning point will be

sufficient to deflect the ion in v±, leading to a degradation of the focus.

We describe radial upscatter in the core by a diffusion equation

dn a2 n
S- DI je f f &

Here Dileff w DIIc (tc/tD), where DI1c is the parallel diffusion coefficient in the
core, given by Eq. (7) with 1/2 miv' 2 = e~max and n' - nc, and (tc/tD) is the

fractional time that a test ion spends in the core per transit through the

device. Assuming the core has radius rc, with uniform density nc, the transit

time. through the core is given approximately by tc - 2 rc/vc, where vc is the

velocity of the test ion in the core region. The time for a test ion to transit

through the entire device is given approximately by tD - 2ro /r, where ro is the

radial birth location of the test ion, and Vr is the average velocity of the test

ion in the device, given by vr ; (1/R) f (2e(max/9 1I/ 2 (1 - (r/R)P) 1/ 2 dr - x/4

(2 e~max/mi)1/2 - w/4 vc, for p - 2. Thus

D 1, (r ] v' ,3 rc Vr )
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where

2 2,3 4

7 CS 2*e01niv' /(e nc 1nA C)

Since the test particle is actually one of the core particles, we assume

that v - v'(I + f), where f - Av/v' and Av is the upscatter in the test particle

velocity due to collisions in the core. Then

01jeff ' [#,(I + f)] - 1 v f)

(1 + f)3

rc)r) n2
(10lcm'

3)

S ) 3/2 (10 kV)

We estimate the ion 'loss" rate lloss due to upscatter in radial velocity

using

(AVr)
2

'rloss Isilf

where Av r = fvr. is the increase in the test ion radial velocity due to collisions

in the core, which we relate to the loss of focus below. The loss time due to

upscatter would then be given by
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7SS v,2f2

los vDjeff

f 2(1 + f) 3  1 C nc (j )( ) S3/2O(10M s (B)
[#,( + f r. Vc 2(012c-

We estimate the value of f which could lead to ion "loss," in the sense

of a broadened core radius rc due to increased deflection as the upscattered

ion makes a larger radial excursion to a higher B-field region. To do this, we

estimate the new radial location ro > r at which the upscattz:.ed ion's radial

energy decreases to its birth energy. Neglecting scattering, we assume the ion

radial energy profile is, generalizing Eq. (3) to ro # R,

Er E0  me~ax I IF R)P]

where typically p is related to the magnetic-field profile by p - m. Due to

upscatter in the core, the ion receives a kick in energy AEr,

AEr - e~max (F-) (2 + f)f

Then Er + AEr =Eo when

S2/p 
ro1-(I + f) (F
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Since the perpendicular deflection of the ion by the magnetic field, AV,

at the ion birth location is related to the core radius by9

rc AV
R-V-

the increase in core radius, Arc, due to larger deflection at r' is then

Arc AV(r) - AV(ro)

rc CAV(r 0)

The perpendicular deflection of the ion by the magnetic field in the SCIF device

was estimated in Ref. 2 by considering ion orbits in orthonormal magnetic and

electric fields:

&Y(ro) 2i r r2

(m + 1)2 [2eBo/mi]

where is the potential drop from r- 0 to r - r. At r,

AV(r;) 2 1 (1 + f)2(2m+2/P)r2M+2
c" i ( (1;

(m + 1) R BOmi Be 0

so that the change In AV due to a larger radial excursion to r, is, for f < 1,

&V(r') - AV(ro) Arc

AV(ro) rc P

20



Thus Arc/rc > 1 requires f comparable to unity. We estimate the ion

"loss" time from Eq. (8) evaluated with f - 1. For ro - R, and for the EXP

parameters given in Table I,

Iloss - 450 s

For REACTOR parameters,

Tloss - 45 ms

as compared with discharge time scales of - 10 ms.

B. ION LOSS DUE TO PERPENDICULAR DEFLECTION IN THE MANTLE

Perpendicular deflection due to scattering in the bulk of the device could

lead to isotropization of the anisotropic ion distribution. From conservation

of angular momentum (without scattering), rv1 (r) - constant. An increase in the

azimuthal ion velocity, Av1 , can be related to an increase in the core

convergence radius, Arc, by2

AvI(r) Arc

Thus isotropization in the bulk region, resulting in a transfer of vr - vI in

the bulk, could degrade the ion focus. In this section, we estimate the rate

at which ions are "lost" to the dense core in the sense that they converge to

a significantly larger core radius.
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We use a continuity equation in velocity space as the basis for the loss

process

an D 82 nT" DLef f -.-ý
av1L

where Dieff is the effective perpendicular diffusion coefficient in the mantle

D.Leff - D.± (tB/tD)

With D1 the perpendicular diffusion coefficient in the bulk, given by Eq. (7)

with T' - e~max and n' - nB, and (tB/tD) is the fractional time that a test ion

spends in the bulk per transit through the device.

As representative values for calculating the loss rate due to deflection

in the bulk of the device, we use r - R/2, and we assume the background ions in

the bulk region have a uniform density nB (r - R/2) given by (see Eq. (4))

E0 11/2
nB (r - R/2) - 3 nedge EVa

B (rdge -e ~max]

and a radial energy given by Er - eOmax. The transit time for a test ion in the

bulk region is then of order of 1/2 its transit tlme through the entire device.

The effective perpendicular diffusion coefficient is then

D1 1 ,2 vo) #t (v l(V/V')l

D±eff - I F (7 (r 2(v/v)TJ
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where IB - Tc (nc/n)(lnA/lnA) - 1/3 (etmax/Eo) 'ricn and v'
1/2(2e~max/mi) 12

We estimate the ion "loss" time, in the sense of ion focus degradation,

as the time for (Av±/v±), and thus (Arc/rc), to become of order q, where q is

a number comparable to or greater than 1. By conservation of angular momentum,

v- 'V.o (R/r) in the bulk, so that Av, - qv1 - 2qv1 o at r - R/2. The ion loss

time can then be estimated from

71°ss (AV1f 11 q2 11c ( ,

loss tl(v/v')

It V 2(v/v-')

- 18 q 2lic for v - v' (9)

with

-03sec [e max(1O keV) ]
3/2

nc(1O12cm' 3)

For the experimental parameters in Table I, the loss time is of order 5

q2 sec. For reactor parameters, the ion loss time due to this collisional

process is of the order of

7loss - 0.2 q2 ms

as compared with discharge time scales of - 10 ms.
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Note that the loss time is proportional to the (Avy)2 required for loss,

which is proportional to the (Arc)2 required for loss. The value of AvI required

for loss will be calculated later in this report.

C. THERMALIZATION BY COLLISIONS AT THE EDGE

A test ion spends approximately the same amount of time transiting the

core region as it does transiting the thinner edge region. That is, the transit

time in the core, tc, where

E 1/2 m. 1/2
t c -2r c/v c -2R[~-- k

max] I maxj

is comparable to the transit time in the edge region, tedge' where

2-re 2R [_E0  [mo 11)/2 I tedge vo0  P ] ptc

From Section II, the ion-ion collision frequency is larger at the edge than in

the core, viz.,

7 ii..e E 0o 40TiIc e f- -ax

We estimate whether the ion distribution might thermalize in the edge

region. The thermalization time scale is of the order of the ion-ion self

24



collision time riie* The amount of time that a test ion spends in the edge

region is tedge times the number of passes through the device.

For experimental parameters, 7iie - 1 sec • (Eo/e~max) - 5 x 10-4 sec.

The ion transit time through the edge region would be of the order of 10 ns for

R - 100 cm. Assuming 104 transits through the device, a test ion would spend

about 10-4 sec in the edge region, somewhat less than the ion-ion collision time.

For reactor parameters, however, T iie -(3 x 10-5 sec)• (Eo/e~max) - 1.5

ns. The ion transit time through the edge region would also be of the order of

1.5 ns for R - 200 cm, p - 2. Thus in several passes through the device, the

ion distribution at the edge could be thermalized.

25



IV. CALCULATION OF THE ION DISTRIBUTION PRODUCED BY COLLISIONS

In Section II we calculated the relative rates of collisions in the

various spatial regions of a SCIF, and found that collisions in the edge regions

dominate. More importantly, we found that the collision rate in the interior

of the device is very small compared with the transit frequency, so that for many

transits the ions return to their original turning points at r - R. That is,

the definition of "edge region" is preserved for thousands of interior plasma

collision times. In Section III we estimated collisional ion "loss" time scales,

and found that these time scales are much longer than discharge time scales for

experimental parameters, but not for reactor parameters. We also found, however,

that collisions in the edge region might relax the anisotropy in that region.

In this section we give a Fokker-Planck-like calculation of temperature

relaxation of the edge distribution due to ion-ion collisions throughout the

device. Since the collision frequencies in the bulk and core are much lower than

the transit frequency, the edge distribution determines the evolution of the ion

density and energy structure in all three regions. The edge distribution evolves

(a) due to collisions at the edge, (b) due to the influx of energy-scattered ions

(due to collisions in the core) and (c) due to energy-deflected ions (due to

collisions in the bulk) coming into the edge region in every transit.

The dominant effect of edge collisions es to relax any temperature

anisotropy which develops in this region. The source of ion anisotropy in the

edge is the influx of excess vI into the edge region due to the conversion of

radial to azimuthal energy via ion-ion collisions in the highly anisotropic bulk

plasma. The goal of the present calculation is to quantify the extent to which
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isotropizing collisions in the low ion energy edge can remove or reduce this

increase of v1. The anisotropy at the edge is the primary effect which spreads

out the distance of closest approach to r - 0 (this is obvious from energy

conservation), which in turn could lead to an isotropic interior.

A. ION DISTRIBUTIONS IN THE THREE REGIONS

In Sections IV.A and IV.B, we assume that the effect of the competition

"between edge collisions and bulk collisions will be that the edge region will

ultimately tend toward a bi-Maxwelllan, characterized by Tr and T1 , and calculate

the steady state difference of Tr and TI in the edge region.

Thus for the edge region, we take

miv) miv±2

f2TK ro 2T 0(0fi,e n Kee e (10)

with Ke being a normalization constant such that

nedge" f d3 v fi,e

Since the ion collision frequency in the interior is low, the ions maintain a

dominant set of turning points at r - R, so that the interior distribution

continues to be the evolution of an edge Maxwellian under the influence of a

strong central potential 0(r). Therefore, we take the ion distribution in the
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bulk region to be the sum of two radially counter-drifting bi-Maxwellians. The

radial drift, vD - 12eo(r)/mi, is due to the electrostatic field. The azimuthal

temperature TI increases with decreasing radius, reflecting conservation of

angular momentum, T1 (r) - T,, (R/r) 2 . Thus in the bulk

mi(vrtvD) 2  mivI
" 2 Tro "

fi,B w KBe .e 2 I (11)

-where KB is a normalization constant such that

nB. f d' v fiB

We note that the bulk distribution reduces to the edge distribution at r - R,

since O(R) - 0.

We assume that the core is defined as that region in which the azimuthal

and radial ion energies are the same, that is, Tr = T1 M e~max. Thus we model

the core distribution as an isotropic Maxwellian at the temperature T c a e~max,

since 0 is virtually constant over the small core region,

miv 2

fi,c M Kce c (12)

For simplicity, we use the density and energy profiles in the three

regions of the device derived in Section II, which can be shown to be similar

to those produced by a bi-Maxwellian.
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B. CALCULATION OF THE STEADY-STATE ION DISTRIBUTION

We model the evolution of T• in the edge region by:

dT.o dT1 o + dT1o (13)

Here, dT±o/dtIB is the source term for the additional v1 coming in to the edge

region on each ion transit, due to the conversion of radial to azimuthal energy

by collisions in the bulk, and dT1 o/dtliso is the isotropization rate due to

collisions in the edge region. There is a similar equation for Tro. However,

2 2since (mvW2) - Tr/2, mvI/2 - T1 , we can use conservation of energy to write7

dT 0  d Tro (14)

and to obtain an equation for the evolution of the edge temperature difference,

AT - To -Tro,

ddTJ~o dTLoj
AT- 3 dt- 1 d 0- (15)tT 3 B ISO

There is a similar driver in which Tro is changed by energy scattering

in the core, with T 0o in the edge changed becau* energy conservation slightly

alters the turning point. We emphasize here the T1 scattering because T±

acquired during a transit is carried out to the turning point decreased only by

r/R (of order 1/2), while vr always goes to 0 at the turning point because of

the structure of 0(r).
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r/R (of order 1/2), while vr always goes to 0 at the turning point because of

the structure of O(r).

In the following calculation, we assume that the edge temperature

difference is small, AT - T1o - Tro << T, because the conversion of radial to

azimuthal velocity of an ion in each transit through the bulk is small compared

with the rate of isotropizing edge collisions, from the estimates in Section II.

The isotropization time for a bi-Maxwellian distribution, in the limit

of small temperature differences, is given by: 7

dToL . AT (16)

-- ISO 7 e

where 7  = (15/4) (m!/2 T3/2 e4 n lnAe), and Tedge - Tro to this orderwe e Ie =(54(m/Tedge/ nedge , Teg Tr

of approximation.

To calculate (dTLo/dt) due to the bulk region, where the ion energy

distribution is highly anisotropic, we write the Fokker-Planck collision term

using the Landau form for the collision operator. We take the energy moment of

the kinetic equation

afi aJ a
at (17)

where j is the three-dimensional particle fll density in velocity space,

representing particle collisions:

ja" affi "d0 B•-. (18)
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where

a <Av > 1 I cAvAv> 1

d <AvtAvO

as given for example in Reference 8.

Using conservation of energy, we obtain for the increase of T due to

the bulk, 9

dT10  d Tro I.,. avf 1i 3 M (-•-" - at f "Y n- f T- I~ n B - f vr rd3•(

We compute jr by writing the flux in this case in Landau form9

lnA (4[e 2 )2 f (ft af8 - f d

r 8T M i •f fl 1 3,, v ITo

with

6 2

rj u u u" :r -Y" so that Ur-u-

u u

and Urx U I
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Here the primed, unprimed quantities refer to the field, test particles,

respectively, and u - Iv - v'I. we assume that the field and test particles

counter-drift radially:

m2 mv2mi (Vr-VD) mi Iv1

fi K KBe •ro e (21)

mt (Vr+VD)2 mv 12
- 2Tro -_

f' -Ke ro e ± (22)
I B

Then

afI mi afi miv f
Z --T_(vr -vD) fi '5 Tr ro I I

fl M. af, miv,1f mi (vI + fv -- If

T - - T ___ rvD)fi!T~ T
r ro ±

Then

In(4e)2 ,Urff• (.) ur +2Vo)

+ Ur fif ()( u

32



which can be written as

nA (4xe 2 )2 [in. U.L2  i u uIr• = F- , m ff .l (u-r 2v,) T 3 7

and, using

f d3 v 
dv2

-Q 0

Eq. (19) becomes

dT10o 2v
-,T- -A f dvrdl dv dv'2 vr

_-a 0 v!L

[u2 m, 2 in

"Tro (ur 2vD) - u rI

where A is given by

A m- mi 2 nA (4xe 2 ) 2
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To do this integral, we make the approxination that u - Ivr - v'I - 2 vD,

so that u can be taken out of the integral. We rewrite the integration variables

as

v r m vr " VD

I

v M vr + vD

r Vr vr Vr ' + 2vO

to obtain

dT1  2 -~+ VD) mu2

AK B Vo3 r (ur - 2v) - U
(2v D) ro I ±

m-2 m ,'2 mv 2  40 ,2
r ivr Ii iv!

ro e ro e" e2 v ,v , (23)
r ed r ±v I (23

which can be rewritten as
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dT0  AK2  rmB ---•- - 3 ,,. r ( D, v)[ rT- (,- r;. - T-• r, -r D ")
(2 )ror rrT7V-rVJ

-2 .- ,2 .V2 .,,2mivr ir m m

e ro e ro e •-±r e L d• d•r ' dv2 dv"2
eer r I

In the integrations over dVr, di', only those terms which are proportional to

even powers of Vr' V', are non-zero; thus the integral over dvr, dV' isrr r

r 2 2

.i d d. r u _V2 .u,. (V + 2v2]
i-* v r FLro

-2 -i,2

•e e

which is

2Tro 2 2 1 1 - 2Tro mu2

Tro 2 r - T1-
- 2w -T ~ [u . -,r-y-

ml I ]3
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so that

d11  A2 2~TloB 72 2Iro ( Tro2NI
(2v)b D Tu.LJ

2T- -2-zr
± e ± dv2 dy'2

I I

To do the v, v' integrations, we write 12 . (v - v!2 ,so that the integration

over dv1L, dv' becomes

I -dv2 fdv,,2 (V2 -2v~v +V,2 e 2TL 2

-(2J- ) 3[2r(2)r(i) - 2r(1.5)r(i.5)]

*(2J-) (2- W)

and we have

dT1  AK2B r2%T T~1~
B o" roti f2_ ii3 1 ro (2m(24)

C~- (2vD) 3~ Fm, r ±l [M ]i
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Then with the normalization constant KB given by

K n(mi mi
KB nB (2rxT) J -r

we have that

AK 2(T2 2T 3 nB 2xT ± e 4 (4 w)

(2 vD) i m2 (2v)3

We rewrite Eq. (24) as

dT1 o (2mic r Tro - T•) (25)

~ TB

where the isotropization time 7B is given by

m2 (v3mB 1 2 VD)3
TB 2re4 (lnAB) nB (4 - )(26)

In order to use this as a source term for (dT/dt)B in the edge region,

it is necessary to take into account the fact th * an ion in it's transit through

the device spends more time in the bulk than in the edge. Thus, we multiply Eq.

(25) by the ratio of the transit time in the bulk to the transit time at the edge

(tB/te). This is equivalent to writing Eq. (25) in units of the edge transit

time. We also need to take the following effect into account, which is a
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consequence of conservation of angular momentum. An ion which gains excess

(1/2)miv 2 in the bulk at radius r, will bring an excess azimuthal energy into

the edge of magnitude a (1/2)miv I(r/R)2 . We thus have, for use in Eq. (13),

d11 Lol !! (r2 tB (27)

thef

~B B' e

Equation (15) then becomes

dAT 6m&vgr 2 tB 30 (28)
R B R Fe re

We use the estimates for the transit time in the bulk and the edge regions from

Section II. The ratio of the transit time in the bulk to the transit time in

the edge is of the order of tB/te - [R/(Eo/ermax)(R/p)] [(Eo /2)/(emax)1/2 ] -

pje7max/Tro, while the ratio of the isotropization time in the bulk, 7B, to the

isotropization time in the edge, 7el is

[81/2(e 3/2 46 e4 nede lnA
B, rO,, •max)'"dgeme (4 - .32 .1/2 Eo3/2

which becomes

Ce~maxj 3/2 nedge (29)

'rB/'e - ro j nB
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Thus, as long as nedge/nB ' p, with p defined in Eq. (2) typically of order 2-3,

we expect that the temperature difference in the edge region would remain small,

AT < Tro* This condition depends on the form of the density profile in the

device, which is determined from the edge ion distribution and conservation of

energy and angular momentum. Using the flattop ion distribution discussed in

Section II, we have that nedge/nB - (e~max/Eo)1/ 2 >> 1.

The equilibrium solution of Eq. (28) yields AT - (T1 - Tr)edge - Tro

(Tro/e~max )1/2 << Tro. Thus the quasisteady solution to this nonlocal collision

relaxation process is an ion distribution which is nearly Maxwellian at the edge.

- Since the ions have turning points in the same vicinity as their birth point,

the interior distribution continues to evolve from the edge distribution,

conserving energy and angular momentum, so that the non-Maxwellian distributions

Eqs. (21)-(22) with TI - TIo (R/r)2 continue to describe the bulk plasma. The

interior, like the edge, is driven toward isotropy by local collisions, but

driven toward anisotropy by influx of ions from the Maxwellian edge. It is

because the edge collision frequency per transit is many orders of magnitude

larger than the bulk rate that the anisotropic influx so dominates the interior.
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V. APPLICATION TO SCIF ION LOSS RATES

For the experimental parameters in Table I, the rate of collisions per

transit is so small as to be negligible. For reactor parameters, however, the

collision rates must be compared to the fusion energy multiplication rate, since

about 104 transits before loss are required for economic operation. Therefore

in this section we consider in detail the loss produced by collisions for reactor

parameters in a magnetically confined SCIF.

The previous results show that edge collisions maintain a non-Maxwellian

interior for a time larger than the small angle scattering time which in most

cases produces a local Maxwellian. Applying this result to SCIF loss rates, we

note that there are two effects. First, large angle scattering will prevent ions

from returning to the vicinity of their birth location, thus removing the healing

effect of edge collisions which assumes a fixed range of turning points. Second,

the slightly anisotropic edge distribution found in Section III will produce some

degradation in the core on the time scale of the small angle scattering time in

the core.

A. ION LOSS BY LARGE ANGLE SCATTERING

The frequency of 900 scattering is obtained by simply setting log A - 1

in the collision rates in Section III. To eolimate the loss rate we must

estimate how large a change in velocity Av is required to cause an ion to be lost

to the core. In this section we consider in detail such losses for reactor

parameters in a magnetically confined SCIF.
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1. Ion Loss Due to Radial UDscatter in the Core

Upscatter in radial velocity in the core by collisions can affect ion

convergence in the device. Consider a collision which causes one ion to gain

energy and another ion to lose energy. The ion which gains energy in the core

can make a larger radial excursion to a radius beyond it's birth radius, with

the possibility that the magnetic fields at the new turning point will be

sufficient to deflect the ion in v1 , leading to a degradation of the focus.

We estimate the value of 6v which could lead to ion "loss," in the sense

of a broadened core radius rc, due to increased deflection by the higher B-field

as the upscattered ion makes a larger radial excursion. To do this, we estimate

the new radial location ro at which the upscattered ion's radial energy decreases

to its birth energy. Neglecting scattering, we assume the ion radial energy

profile is, generalizing Eq. (3) to r0 # R,

E = + e r 0) ( r)p 9(0Er E0 +emax 0,(0

Due to upscatter in the core, the ion receives a kick in energy AEr,

tEr - eomax F-p f(2 + f) (31)

where f - 6v r/vr.

Then Er + AE r - E0 when

Eo +emax I(I) (R)P] + memax (W-) f(2 +f) - Eo
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or

r 0• f2/p r o
R " R (I + f)I(F) (32)

If this new turning point r• takes the ion into a region of high magnetic

field, B - Bo(r/RB) m, the perpendicular deflection of the ion by this magnetic

field, Av1 , changes the core radius by (see Eq. (5))

rc Av1r - A 
(33)

The perpendicular deflection of the ion by the magnetic field can be estimated

from straightforward consideration of ion orbits in orthonormal magnetic and

electric fields. Assuming that the ions were originally born at a location ro

at which magnetic deflection would give a contribution to Avlo (and to rc) of

the same order of magnitude as the AvI arising from the thermal spread T.o in

the ion source, it is easy to show that the spread Av due to a larger radial

excursion to r', at which the magnetic field is larger (B - rm), is0

AV(F0) 4m 6Vr Arc(34)

Av(r0) p vr rc

Thus ion loss, in the sense that Arc/rc - 1, requires 6 Vr/Vr comparable

to unity, which means a single large angle scattering. From the results in

Section II, and the reactor parameters in Table I, this gives (setting log A

- 1)
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tB _ R
'loss - tic lncCc - liic c (-)-85ms r(35)

c C

which is large compared to fusion reaction times of order 10 ms, from References

1 and 2.

2. Ion Loss Due to Perpendicular Deflection in the Bulk

Perpendicular deflection due to scattering in the bulk of the device

could lead to isotropization of the anisotropic ion distribution. From

conservation of angular momentum (without scattering), rvI(r) - constant. An

increase in the azimuthal ion velocity AvI at its birth point is related to an

increase in the core convergence radius, Arc, by

AvI(r0 ) Arc
v(ro) r (36)

Since vr >> vI through much of the ion orbit, even a small decrease in Avr/vr

could produce enough Av /vI - (Avr/vr)(Vr/V±) to degrade the ion focus. However,

a small Avr would still result in a turning point at r = ro, where collisions

would restore ft as calculated in Section II. In order to change ro

significantly, 6 vr/vr - 1 is required, even for collisions in the bulk. The

result must take into account the lower density nB/nc in the bulk, and the

extended dwell time R/rc in the bulk. This gives an estimate of the loss time

due to collisions in the bulk of

7loss,B a 7loss,core(nc/nB)(rc/R) - 7loss,core(e$/Eo)1/2 = 10 s , (37)
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for reactor parameters. This is negligible compared with 7fusion*

B. Loss Due to the Edge Anisotropy

In Section III we calculated the anisotropy which develops at the edge

due to small angle scattering in the rest of the device. In this section we

estimate the degradation of the core which results from this anisotropy.

From Section III we showed that the increase in Tlo at r - R was of order

Eo(Eo/eo)l/2, and that the increase in core size was Arc/rc = Av2/v1 . Therefore

it follows that

Arc E0 1/4 < (38)

rc e

with this small Arc taking place on a time scale of a few ion transits. We

conclude that small angle scattering, when the Maxwellization of the plasma near

the ion turning points is taken into account, is a very small contribution to

core degradation, even though this is the fastest collisional effect.
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Table I. Representative SCIF parameters.

EXP REACTOR

e~max (depth of the potential well) 10 keV 100 keV

E0 (ion birth energy) 5 eV 5 eV

nc (ion core density) 1012 cm- 3  1018 cm" 3

R (radius of device) I m 2 m

B (magnetic field at R, m - 3) 0.2 T 1 T
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